Darihimpunan x 2 4 6 8 10 dan y 4 8 12 16 20. Sman 12 makassar soal dan pembahasan limit fungsi trigonometri 1. Soal Dan Pembahasan Turunan Fungsi Aljabar Doc / Soal Dan Pembahasan Turunan Fungsi Aljabar Pdf Cara Golden - Kita bahas di tulisan terpisah yaa, kalau dibahas sekarang tulisan ini terlalu panjang.. Perhatikan contoh turunan dalam
Y5 sin x y 5 cos x soal nomor 2 diberikan fungsi f x 3 cos x tentukan nilai dari f Ο 2. Ingin latihan soal matematika lebih banyak lagi. Contoh Soal Limit Grafik Dan Pembahasan Soal dan pembahasan persamaan trigonometri persamaan trigonometri didefinisikan sebagai persamaan yang melibatkan perbandingan trigonometri seperti sinus cosinus tangen
Soaldan pembahasan turunan fungsi trigonometri. Salah satu persamaan garis singgung yang melalui titik potong kurva dan garis tersebut adalah. Jika ada request materi/soal silahkan ajukan ya. Biar kamu ngerti tentang materi ini, yang pertama kali perlu kamu lakuin adalah memahami tentang pengertiannya. Teorema turunan fungsi trigonometri
ContohSoal & Pembahasan. Berikut ini adalah contoh soal dan pembahasan dari turunan aljabar dan trigonometri. Yuk, kita simak bersama! 1. Contoh Soal Turunan Fungsi Aljabar. 1.) Tentukan turunan pertama dari fungsi aljabar berikut: f(x) = 2x 3. Jawaban: f' (x) = 3 . 2x 3-1 . f' (x) = 6x 2. 2.)
ContohSoal: Aplikasi Turunan Fungsi Trigonometri I Pbm 12 Setelah mempelajari perbandingan trigonometri dasar sudut istimewa identitas trigonometri aturan sinus aturan cosinus dan persamaan trigonometri selanjutnya kita akan mempelajari aplikasi trigonometri. Format file: PPT Ukuran file: 2.2mbTanggal pembuatan soal: November 2018 Jumlah soal Aplikasi Turunan Fungsi Trigonometri I Pbm 12 :
A 40 jam B. 60 jam C. 100 jam D. 120 jam E. 150 jam Penyelesaian : Biaya total = x (4x - 800 + ) = 4xΒ² - 800x + 120 Agar biaya minimum diperoleh, maka : turunan biaya total = 0 8x - 800 = 0 x = 100 jam Jawaban : C β 18.
oZ2wis. Turunan fungsi trigonometri merupakan salah satu materi matematika yang dipelajari pada jenjang SMA, tepatnya di kelas XI. Berikut ini kami sajikan soal-soal yang berkaitan dengan materi turunan fungsi trigonometri, yang disertai dengan pembahasan. Soal dan PembahasanNomor 1Tentukan , jika diketahui .PembahasanMisalkan $fx = \sin x$, sehingga $$f\textcolor{maroon}{x+h} = \sin \textcolor{maroon}{x+h}$$ Berdasarkan definisi turunan fungsi, diperoleh $$\begin{aligned} D_xy &= f'x \\ &= \lim_{h \to 0} \frac{\textcolor{green}{fx+h}-\textcolor{blue}{fx}}{h} \\ &= \lim_{h \to 0} \frac{\textcolor{green}{\sin x+h}-\textcolor{blue}{\sin x}}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-\sin x+\cos x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-1+\cos x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\sin x \cos h-1}{h}+\lim_{h \to 0} \frac{\cos x \sin h}{h} \\ &= \sin x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\cos h-1}{h}}+\cos x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\sin h}{h}} \end{aligned}$$ Karena $$\lim_{h \to 0} \frac{\cos h-1}{h}=0 \quad \text{dan} \quad \lim_{h \to 0} \frac{\sin h}{h}$$ maka $$\begin{aligned} f'x &= \sin x \cdot \textcolor{red}{0}+\cos x \cdot \textcolor{red}{1} \\ &= 0+\cos x \\ &= \cos x \end{aligned}$$Nomor 2Tentukan , jika diketahui .PembahasanMisalkan $fx = \cos x$, sehingga $$f\textcolor{maroon}{x+h} = \cos \textcolor{maroon}{x+h}$$ Berdasarkan definisi turunan fungsi, diperoleh $$\begin{aligned} f'x &= \lim_{h \to 0} \frac{\textcolor{green}{fx+h}-\textcolor{blue}{fx}}{h} \\ &= \lim_{h \to 0} \frac{\textcolor{green}{\cos x+h}-\textcolor{blue}{\cos x}}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-\sin x \sin h-\cos x}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-\cos x-\sin x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-1-\sin x \sin h}{h} \\ &= \lim_{h \to 0} \frac{\cos x \cos h-1}{h}-\lim_{h \to 0} \frac{\sin x \sin h}{h} \\ &= \cos x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\cos h-1}{h}}-\sin x \cdot \textcolor{red}{\lim_{h \to 0} \frac{\sin h}{h}} \end{aligned}$$ Karena $$\lim_{h \to 0} \frac{\cos h-1}{h}=0 \quad \text{dan} \quad \lim_{h \to 0} \frac{\sin h}{h}$$ maka $$\begin{aligned} f'x &= \cos x \cdot \textcolor{red}{0}-\sin x \cdot \textcolor{red}{1} \\ &= 0-\sin x \\ &= -\sin x \end{aligned}$$Nomor 3Tentukan hasil dari .PembahasanPertama, nyatakan $\tan x$ sebagai hasil bagi antara $\sin x$ dan $\cos x$. $$D_x \tan x = D_x \left \frac{\sin x}{\cos x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \tan x &= D_x \left \frac{\textcolor{blue}{\sin x}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{\sin x} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{\sin x} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{\cos x \cdot \cos x - \sin x -\sin x}{\cos^2 x} \\ &= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\ &= \frac{1}{\cos^2 x} \\ &= \sec^2 x \end{aligned}$$Nomor 4Tentukan hasil dari .PembahasanPertama, nyatakan $\csc x$ sebagai kebalikan dari $\sin x$. $$D_x \csc x = D_x \left \frac{1}{\sin x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \csc x &= D_x \left \frac{\textcolor{blue}{1}}{\textcolor{green}{\sin x}} \right \\ &= \frac{D_x \textcolor{blue}{1} \cdot \textcolor{green}{\sin x} - \textcolor{blue}{1} \cdot D_x \textcolor{green}{\sin x}}{\textcolor{green}{\sin x}^2} \\ &= \frac{0 \cdot \sin x - 1 \cdot \cos x}{\sin^2 x} \\ &= \frac{0-\cos x}{\sin^2 x} \\ &= \frac{-\cos x}{\sin x \cdot \sin x} \\ &= - \frac{1}{\sin x} \cdot \frac{\cos x}{\sin x} \\ &= - \csc x \cdot \cot x \end{aligned}$$Nomor 5Tentukan hasil dari .PembahasanPertama, nyatakan $\sec x$ sebagai kebalikan dari $\cos x$. $$D_x \sec x = D_x \left \frac{1}{\cos x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \sec x &= D_x \left \frac{\textcolor{blue}{1}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{1} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{1} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{0 \cdot \cos x - 1 \cdot - \sin x}{\cos^2 x} \\ &= \frac{0+\sin x}{\cos^2 x} \\ &= \frac{\sin x}{\cos x \cdot \cos x} \\ &= \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} \\ &= \sec x \cdot \tan x \end{aligned}$$Nomor 6Tentukan hasil dari .PembahasanPertama, nyatakan $\cot x$ sebagai hasil bagi antara $\cos x$ dan $\sin x$. $$D_x \cot x = D_x \left \frac{\cos x}{\sin x} \right$$ Berdasarkan aturan pembagian pada turunan, diperoleh $$\begin{aligned} D_x \cot x &= D_x \left \frac{\textcolor{blue}{\cos x}}{\textcolor{green}{\sin x}} \right \\ &= \frac{D_x \textcolor{blue}{\cos x} \cdot \textcolor{green}{\sin x} - \textcolor{blue}{\cos x} \cdot D_x \textcolor{green}{\sin x}}{\textcolor{green}{\sin x}^2} \\ &= \frac{-\sin x \cdot \sin x - \cos x \cdot \cos x}{\sin^2 x} \\ &= \frac{-\sin^2 x-\cos^2 x}{\sin^2 x} \\ &= \frac{-\sin^2 x+\cos^2 x}{\sin^2 x} \\ &= \frac{-1}{\sin^2 x} \\ &= -\csc^2 x \end{aligned}$$Nomor 7Tentukan , jika diketahui .PembahasanBerdasarkan aturan penjumlahan pada turunan, diperoleh $$\begin{aligned} D_xy &= D_x\textcolor{red}{2\sin x}+\textcolor{blue}{3\cos x} \\ &= D_x\textcolor{red}{2 \sin x}+D_x\textcolor{blue}{3\cos x} \\ &= 2\cdot D_x \sin x+3 \cdot D_x \cos x \\ &= 2 \cdot \cos x + 3 \cdot -\sin x \\ &= 2\cos x-3\sin x \end{aligned}$$Nomor 8Tentukan , jika diketahui .PembahasanMisalkan $u = \sin x$, sehingga $y=u^2$. Turunan dari kedua fungsi ini adalah $$\begin{aligned} &u = \sin x &&\Longrightarrow \quad \frac{du}{dx} = \cos x \\ &y = u^2 &&\Longrightarrow \quad \frac{dy}{du} = 2u \end{aligned}$$ Berdasarkan Aturan Rantai diperoleh $$\begin{aligned} D_xy &= \frac{dy}{dx} \\ &= \frac{dy}{du} \cdot \frac{du}{dx} \\ &= 2 \textcolor{blue}{u} \cdot \cos x \\ &= 2 \textcolor{blue}{\sin x} \cos x \end{aligned}$$Nomor 9Tentukan , jika diketahui .PembahasanBerdasarkan aturan penjumlahan, diperoleh $$\begin{aligned} D_xy &= D_x\cos^2 x + \sin^2 x \\ &= \textcolor{red}{D_x\cos^2 x} + \textcolor{blue}{D_x \sin^2 x} \end{aligned}$$ Hasil dari $\textcolor{red}{D_x\cos^2 x}$ dan $\textcolor{blue}{D_x \sin^2 x}$ dapat dihitung menggunakan Aturan Rantai. $$\begin{aligned} D_xy &= \textcolor{red}{2 \cos x -\sin x} + \textcolor{blue}{2\sin x \cos x} \\ &= -2\sin x\cos x + 2 \sin x \cos x \\ &= 0 \end{aligned}$$ Cara yang lebih mudah adalah memanfaatkan identitas trigonometri $\cos^2x+\sin^2x=1$. $$\begin{aligned} D_xy &= D_x \textcolor{teal}{\cos^2 x + \sin^2 x} \\ &= D_x \textcolor{teal}{1} \\ &= 0 \end{aligned}$$Nomor 10Tentukan , jika diketahui .PembahasanBerdasarkan aturan pengurangan, diperoleh $$\begin{aligned} D_xy &= D_x1-\sin^2 x \\ &= \textcolor{red}{D_x1}-\textcolor{blue}{D_x \sin^2 x} \\ &= \textcolor{red}{0}-\textcolor{blue}{2\sin x\cos x} \\ &= -2\sin x\cos x \end{aligned}$$Nomor 11Tentukan , jika diketahui .PembahasanBerdasarkan aturan pembagian, diperoleh $$\begin{aligned} D_xy &= D_x \left \frac{\textcolor{blue}{\sin x+\cos x}}{\textcolor{green}{\cos x}} \right \\ &= \frac{D_x \textcolor{blue}{\sin x+\cos x} \cdot \textcolor{green}{\cos x} - \textcolor{blue}{\sin x+\cos x} \cdot D_x \textcolor{green}{\cos x}}{\textcolor{green}{\cos x}^2} \\ &= \frac{\cos x-\sin x \cdot \cos x-\sin x+\cos x-\sin x}{\cos^2 x} \\ &= \frac{\cos^2 x-\textcolor{red}{\sin x\cos x} + \sin^2 x + \textcolor{red}{\sin x\cos x}}{\cos^2x} \\ &= \frac{\cos^2x+\sin^2x}{\cos^2x} \\ &= \frac{1}{\cos^2 x} \\ &= \sec^2x \end{aligned}$$Nomor 12Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{\sin x}\textcolor{blue}{\cos x} \\ &= D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\cos x} \\ &= \cos x \cdot \cos x + \sin x \cdot -\sin x \\ &= \cos^2 x-\sin^2 x \end{aligned}$$Nomor 13Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{\sin x} \textcolor{blue}{\tan x} \\ &= D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{\tan x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\tan x} \\ &= \cos x \cdot \tan x + \sin x \cdot \sec^2 x \\ &= \cos x \cdot \frac{\sin x}{\cos x} + \sin x \cdot \frac{1}{\cos^2 x} \\ &= \sin x+\frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} \\ &= \sin x + \tan x \sec x \end{aligned}$$Nomor 14Tentukan , jika diketahui .PembahasanBerdasarkan aturan pembagian, diperoleh $$\begin{aligned} D_xy &= D_x \left \frac{\textcolor{red}{\sin x}}{\textcolor{blue}{x}} \right \\ &= \frac{D_x \textcolor{red}{\sin x} \cdot \textcolor{blue}{x}-\textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{x}}{\textcolor{blue}{x}^2} \\ &= \frac{\cos x \cdot x-\sin x \cdot 1}{x^2} \\ &= \frac{x\cos x-\sin x}{x^2} \end{aligned}$$Nomor 15Tentukan , jika diketahui .PembahasanBerdasarkan aturan perkalian, diperoleh $$\begin{aligned} D_xy &= D_x \textcolor{red}{x^2} \textcolor{blue}{\cos x} \\ &= D_x \textcolor{red}{x^2} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{x^2} \cdot D_x \textcolor{blue}{\cos x} \\ &= 2x \cdot \cos x + x^2 \cdot -\sin x \\ &= 2x\cos x-x^2\sin x \end{aligned}$$Nomor 16Tentukan , jika diketahui .PembahasanBerdasarkan aturan rantai, diperoleh $$\begin{aligned} D_xy &= D_x \tan^2 x \\ &= 2\tan x \cdot \textcolor{blue}{D_x \tan x} \\ &= 2\tan x \cdot \textcolor{blue}{\sec^2 x} \end{aligned}$$Nomor 17Tentukan , jika diketahui .PembahasanBerdasarkan aturan rantai, diperoleh $$\begin{aligned} D_xy &= D_x \sec^3 x \\ &= 3\sec^2 x \cdot \textcolor{blue}{D_x \sec x} \\ &= 3\sec^2 x \cdot \textcolor{blue}{\sec x \tan x} \\ &= 3\sec^3 x \tan x \end{aligned}$$Nomor 18Gunakan identitas trigonometri dan aturan perkalian, untuk menentukan .PembahasanBerdasarkan identitas trigonometri $\sin 2x = 2\sin x\cos x$ dan aturan perkalian, diperoleh $$\begin{aligned} D_x \sin 2x &= D_x 2\sin x\cos x \\ &= 2 \cdot D_x \textcolor{red}{\sin x}\textcolor{blue}{\cos x} \\ &= 2 \cdot [D_x\textcolor{red}{\sin x} \cdot \textcolor{blue}{\cos x} + \textcolor{red}{\sin x} \cdot D_x \textcolor{blue}{\cos x}] \\ &= 2 \cdot [\cos x \cdot \cos x + \sin x \cdot -\sin x] \\ &= 2 \cdot [\cos^2 x-\sin^2 x] \\ &= 2 \cos 2x \end{aligned}$$
You are here Home / rumus matematika / Soal Matematika 15 Soal Turunan Aljabar dan Trigonometri Guys, rumushitung ada soal matematika nih. Ada 20 soal tentang turunan fungsi aljabar dan trigonometri. Bagi kalian yang belum mempelajari bisa cari di laman Pada soal ini sudah ada pembahasannya. Jadi, kalian yang masih bingung cara mengerjakannya bisa melihat pembahasan soal. Ingat ! Rumus Turunan Aljabar fx = k β f'x = 0 k = konstantafx = x β f'x = 1fx = kx β f'x = kfx = kUx β f'x = kU'xfx = axn β f'x = = U Β± V β f'x = Uβ Β± Vβfx = U x V β f'x = Uβ V + Vβ Ufx = U/V β f'x = Uβ V β Vβ U/V2fx = Uxn β f'x = nUxn-1 . U'x Rumus Turunan Trigonometri fx = sin x β f'x = cos xfx = cos x β f'x = -sin xfx = sin ax β f'x = a cos axfx = cos ax β f'x = -a sin axfx = tan x β f'x = sec2 xfx = cot x β f'x = -csc2 xfx = sec x β f'x = sec x tan xfx = csc x β f'x = -csc x cot xfx = siny ax β f'x = y sin ax . a cos ax Soal dan Pembahasan Turunan Aljabar dan Trigonometri 1. Turunan pertama dari fx = 5x + 1 adalah . . . A. 5xB. 5C. 5x + 1D. 1E. 0 Pembahasan fx = 5x + 1f'x = 1 . 5x1-1 + 0f'x = 5 B 2. Turunan pertama dari fx = 5x2 β 10x β 3 adalah . . . A. 5x β 10B. 5x + 10C. 10x β 10D. 10x + 10E. 5x2 β 10 Pembahasan fx = 5x2 β 10x β 3f'x = 2 . 5x2-1 β 10 β 0f'x = 10x β 10 C 3. Diketahui f'x = 14 dan fx = 2x2 + 6x -9. Nilai x yang memenuhi setelah turunan adalah . . . A. 2B. -2C. 3D. -4E. 4 Pembahasan fx = 2x2 + 6x β 9f'x = 4x + 6 Maka,f'x = 144x + 6 = 144x = 14 β 64x = 8x = 2 A 4. Turunan pertama dari fx = 3sin 3x adalah . . . A. 3cos 3xB. -9cos 3xC. 9cos 3xD. -3cos 3xE. -9sin 3x Pembahasan fx = 3sin 3xf'x = 3 . 3cos 3xf'x = 9cos 3x C 5. Diketahui fx = 7x2 β 53x2 + 3x β 5, nilai dari f'3 = . . . A. 1520B. 2423C. 3155D. 2520E. 3255 Pembahasan fx = 7x2 β 53x2 + 3x β 5U = 7x2 β 5 β Uβ = 14xV = 3x2 + 3x β 5 β Vβ = 6x + 3 fx = U . Vf'x = Uβ V + Vβ Uf'x = 14x 3x2 + 3x β 5 + 6x + 37x2 β 5f'3 = 143 332 + 33 β 5 + 63 + 3732 β 5f'3 = 4227 + 9 β 5 + 18 + 363 β 5f'3 = 4231 + 2158f'3 = 1302 + 1218f'3 = 2520 D 6. Jika fx = 2f'x dengan fx = x2 + 3. Nilai x yang memenuhi adalah . . . A. 1 dan 3B. -1 dan 3C. -3 dan -1D. -3 dan 1E. -1 dan 1 Pembahasan fx = x2 + 3f'x = 2x Maka,fx = 2f'xx2 + 3 = 22xx2 β 4x + 3 = 0x β 1x β 3 = 0x = 1 V x = 3 Jadi,x = 1 dan 3 A 7. Diketahui turunan f'x = 12. Jika fx = 1/3x3 β 4x + 3 dan x adalah bilangan bulat positif, maka nilai x setelah diturunkan adalah . . .A. 0B. 1C. 2D. 3E. 4 Pembahasan fx = 1/3x3 β 4x + 3f'x = x2 β 4 Maka,f'x = 12x2 β 4 = 12x2 = 16x = -4 dan x = 4Nilai x yang bilangan positif adalah 4 E 8. Turunan pertama fx = 3x2 sin2 3x adalah . . . A. 6xsin2 3x β 3x sin 3x cos 3xB. 6xsin2 3x + 3x sin 3x cos 3xC. 3xsin2 3x + 3x sin 3x cos 3xD. 3xsin2 3x β 3x sin 3x cos 3xE. 6xsin2 x + 3x sin x cos x Pembahasan fx = 3x2 sin2 3xU = 3x2 β Uβ = 6xV = sin2 3x β Vβ = 2sin 3x . 3cos 3xatau Vβ = 6sin 3x cos 3x f'x = Uβ V + Vβ Uf'x = 6x sin2 3x + 6sin 3x cos 3x3x2f'x = 6x sin2 3x + 18x2 sin 3x cos 3xf'x = 6xsin2 3x + 3x sin 3x cos 3x B 9. Diketahui fungsi fx = 9x2 + 16x + 9 dan gx = x2 β 3x + 4. Nilai dari f'g'3 = . . . A. 60B. 70C. 80D. 90E. 100 Pembahasan fx = 9x2 + 16x + 9f'x = 18x + 16 gx = x2 β 3x + 4g'x = 2x β 3 Maka,f'g'x = 182x β 3 + 16f'g'3 = 1823 β 3 + 16f'g'3 = 54 + 16f'g'3 = 70 B 10. Turunan kedua dari fx = 3x4 + 4x3 β 3x2 β 2x + 4 adalah . . . A. 36x2 β 24x β 6B. 36x2 + 24x β 6C. 36x2 + 24x + 6D. 12x2 + 24x β 6E. 12x2 β 24x β 6 Pembahasan fx = 3x4 + 4x3 β 3x2 β 2x + 4f'x = 12x3 + 12x2 β 6x β 2turunan pertama f'x = 12x3 + 12x2 β 6x β 2fβx = 36x2 + 24x β 6 Bturunan kedua 11. Jika gx = 2x β 32, maka g'2 = . . . A. 1B. -1C. 2D. -4E. 4 Pembahasan gx = 2x β 32g'x = 2 2x β 32-1 . 2g'x = 22x β 3 . 2g'x = 42x β 3g'2 = 422 β 3g'2 = 4 E 12. Turunan kedua fungsi fx = csc2 x adalah . . . A. 2csc2 x cot xB. -csc2 x cot xC. -2csc2 x cot xD. csc2 x cot xE. -2csc x cot x Pembahasan fx = csc2 xf'x = 2csc x . -csc x cot xf'x = -2csc2 x cot x C 13. Jika fx = sin2 x β cos2 x, maka f'Ο/6 = . . . A. β3B. 0C. -β3D. 2β3E. -2β3 Pembahasan fx = sin2 x β cos2 xf'x = 2sin x . cos x + 2cos x . sin xf'Ο/6 = 2sin Ο/6 . cos Ο/6 + 2cos Ο/6 . sin Ο/6f'Ο/6 = 21/2β3/2 + 2β3/21/2f'Ο/6 = β3/2 + β3/2f'Ο/6 = β3 A 14. Jika px = x2 β 3 dan qx = 2x2 + 1, maka nilai p'2 β 2q'-2 adalah . . . A. 20B. 30C. 40D. 50E. 60 Pembahasan px = x2 β 3p'x = 2x qx = 2x2 + 1q'x = 4x Maka,= p'2 β 2q'-2= 22 β 24-2= 4 + 16= 20 A 15. Diketahui fx = 4x2 β 1/x2 β 2x + 1, maka f'-1 = . . . A. 1B. -2C. 3D. -4E. 5 Pembahasan fx = 4x2 β 1/x2U = 4x2 β 1 β Uβ = 8xV = x2 β Vβ = 2x f'x = Uβ V β Vβ U/V2f'x = [8x . x2 β 2x . 4x2 β 1]/x22f'x = 8x3 β 8x3 + 2x/x4f'x = 2x/x4f'x = 2/x3f'-1 = 2/-13f'-1 = 2/-1f'-1 = -2 B Itulah beberapa soal matematika tentang turunan aljabar dan trigonometri. Semoga yang rumushitung share di atas dapat menambah ilmu wawasan dan pengetahuan kalian. Semoga bermanfaat dan sekian terima kasih.
Bahas Soal Matematika Β» Turunan βΊ Contoh Soal dan Pembahasan Turunan Fungsi Trigonometri Matematika SMA Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Pada artikel ini kita akan membahas beberapa contoh soal turunan fungsi trigonometri matematika SMA. Pada dasarnya, menyelesaikan soal turunan fungsi trigonometri mirip dengan cara menyelesaikan turunan fungsi aljabar yakni kita dapat menggunakan rumus-rumus turunan seperti turunan perkalian, pembagian, dan turunan fungsi komposisi dengan aturan rantai. Hanya saja, karena di sini fungsi yang akan dicari turunannya adalah fungsi trigonometri maka kita perlu pahami dulu turunan dari fungsi trigonometri dasar berikut ini Perhatikan bahwa kita menggunakan notasi \ fβx \ untuk menyatakan turunan seperti diberikan di atas. Sebenarnya masih ada beberapa cara lain untuk menyatakan turunan, yakni \[ y' \quad \frac{dy}{dx} \quad \text{dan} \quad Dx \] Sebelum masuk ke contoh soal dan pembahasan dari turunan fungsi trigonometri, sebaiknya kita sudah menguasai beberapa rumus turunan berikut ini agar dapat mengerjakan soal turunan trigonometri dengan lancar. Untuk lebih jelasnya, kita langsung masuk ke contoh soal dan pembahasan turunan fungsi trigonometri berikut ini. Contoh 1 Jika \ fx=-\cos^2 x - \sin^2 x \, maka \ fβx \ adalahβ¦ Pembahasan Β» Untuk mengerjakan soal ini kita bisa meminjam sifat dari identitas trigonometri berikut \begin{aligned} \sin 2x &= 2 \sin x \cos x \\[8pt] \cos 2x &= \cos^2 x - \sin^2 x \end{aligned} Dengan demikian, Contoh 2 Jika \ y = 3x^4 + \sin 2x + \cos 3x \, maka \ \displaystyle \frac{dy}{dx} = \cdots \ Pembahasan Β» Contoh 3 Jika \ y = 2 \sin 3x β 3 \cos 2x \, maka \ \displaystyle \frac{dy}{dx} = \cdots \ Pembahasan Β» Contoh 4 Jika \ \displaystyle fx = \frac{ \sin x + \cos x }{ \sin x }, \sin x \neq 0 \ dan \ fβx \ adalah turunan \ fx\, maka \ \displaystyle fβ \left \frac{\pi}{2} \right = \cdots \ Pembahasan Β» Misalkan \ u = \sin x + \cos x \ dan \ v = \sin x \ sehingga \ fx = u/v \. Ingat bahwa rumus turunan untuk pembagian yaitu Kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, Contoh 5 Jika \ \displaystyle fx = a \tan x + bx, \ fβ \left \frac{\pi}{4} \right = 3 \ dan \ \displaystyle fβ \left \frac{\pi}{3} \right = 9 \, maka \ a + b = \cdots \ Pembahasan Β» Ingat bahwa turunan dari \ \tan x \ adalah \ \sec^2 x \ sehingga Selanjutnya, dengan menyelesaikan SPLDV persamaan 1 dan 2 di atas dengan cara substitusi atau eliminasi, kita peroleh nilai \a = 3\ dan \b = -3\ sehingga \a + b = 0\. Contoh 6 Turunan pertama dari \ y = \cos^4 x \ adalahβ¦ Pembahasan Β» Untuk menyelesaikan soal turunan ini kita bisa gunakan aturan rantai. Misalkan \ u = \cos x \ sehingga kita dapatkan hasil berikut Dengan demikian, turunan pertama dari \ y = \cos^4 x \ dengan cara aturan rantai, yakni Contoh 7 Jika \ fx = \sin \sin^2 x \, maka \ fβx = \cdots \ Pembahasan Β» Untuk mencari turunan pertama dari fungsi pada soal di atas, kita bisa gunakan aturan rantai. Misalkan \ u = \sin x \ sehingga Misalkan lagi \ v = u^2 \ sehingga Dengan demikian, turunan pertama dari \ fx = \sin \sin^2 x \ berdasarkan aturan rantai, yaitu Contoh 8 Misalkan \ fx = 2 \tan \sqrt{\sec x} \, maka \ fβx = \cdots \ Pembahasan Β» Kita dapat gunakan aturan rantai untuk menyelesaikan soal ini. Misalkan \ u = \sec x \ sehingga Misalkan lagi \ v = \sqrt{u} \ sehingga Dengan demikian, turunan pertama dari \ fx = \sin \sin^2 x \ berdasarkan aturan rantai, yaitu Contoh 9 Turunan pertama dari fungsi \ \displaystyle fx = \frac{1+\cos x}{\sin x} \ adalah \ fβx = \cdots \ Pembahasan Β» Misalkan \ u = 1 + \cos x \ dan \ v = \sin x \ sehingga \ fx = u/v \. Ingat bahwa rumus turunan untuk pembagian yaitu Kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, Contoh 10 Jika fungsi \ fx = \sin ax + \cos bx \ memenuhi \ fβ0 = b \ dan \ \displaystyle fβ \left \frac{\pi}{2a} \right = -1 \, maka \a + b = \cdots \ Pembahasan Β» Karena \ b = a \ dan \a = 1\, maka \b\ juga bernilai 1 sehingga \ a + b = 1 + 1 = 2 \. Contoh 11 Jika \ fx = \sin x \cos 3x \, maka \ \displaystyle fβ \left \frac{1}{6} \pi \right = \cdots \ Pembahasan Β» Misalkan \ u = \sin x \ dan \ v = \cos 3x \ sehingga \ fx = u \cdot v \. Ingat bahwa rumus turunan dari perkalian dua fungsi yaitu Selanjutnya, kita cari turunan dari u dan v terlebih dahulu, yakni Dengan demikian, Contoh 12 Turunan pertama dari fungsi \ y = \sin x + \cos x^2 \ adalahβ¦ Pembahasan Β» Untuk mencari turunan dari fungsi dalam soal ini ada dua cara yang bisa digunakan. Cara yang pertama yaitu dengan menyederhanakan fungsinya terlebih dahulu lalu mencari turunannya. Perhatikan berikut ini Cara kedua yaitu langsung menggunakan sifat dari turunan. Contoh 13 Jika \ fx = \sqrt{1+\sin^2 x} \ di mana \ 0 \leq x \leq \pi \, maka \ fβx \cdot fx \ sama denganβ¦ Pembahasan Β» Contoh 14 Diketahui \ fx = x \sin 3x \, maka \ fβ \left \frac{\pi}{4} \right \ sama denganβ¦ Pembahasan Β» Misalkan \ u = x \ dan \ v = \sin 3x \, maka \ fx = u \cdot v \. Ingat bahwa rumus turunan dari perkalian dua fungsi, yaitu Selanjutnya, kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, turunan dari \ fx = x \sin 3x \, yakni Contoh 15 Jika \ \displaystyle fx = \frac{ \cos x - \sin x }{ \cos x + \sin x } \, dengan \ \cos x + \sin x \neq 0 \, maka \ fβx = \cdots \ Pembahasan Β» Misalkan \ u = \cos x - \sin x \ dan \ v = \cos x + \sin x \ sehingga \ fx = u/v \. Ingat bahwa rumus turunan dari pembagian dua fungsi, yaitu Kita cari turunan dari \u\ dan \v\ terlebih dahulu, yakni Dengan demikian, Contoh 16 Jika \ fx = x \cos x \, maka \ \displaystyle fβ \leftx + \frac{\pi}{2} \right = \cdots \ Pembahasan Β» Ingat bahwa Sekarang kita akan menyelesaikan turunan dari fungsi di atas menggunakan rumus turunan untuk perkalian dua fungsi. Misalkan \ u = - \left x + \frac{\pi}{2} \right\ dan \ v = \sin x \ sehingga Dengan demikian, Contoh 17 Jika \ fx = \sin x + \cos x\cos 2x + \sin 2x \ dan \ fβx = 2 \cos 3x + gx \, maka \ gx = \cdots \ Pembahasan Β» Untuk menyelesaikan soal ini kita mungkin memerlukan catatan rumus jumlah dan selisih dua sudut pada perbandingan trigonometri. Jadi, \ gx = \cos 3x - \sin x \. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan jika ada yang kurang jelas dari artikel ini silahkan tanyakan di kolom komentar. Terima kasih. Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time.
Daftar isi1. Grafik Fungsi Sinus 2. Grafik Fungsi Cosinus 3. Grafik Fungsi Tangen 4. Contoh Soal Grafik Fungsi Trigonometri dan Pembahasan Soal dan Pembahasan Grafik Fungsi Trigonometri. Mengulas trik-trik atau cara praktis untuk menentukan sketsa grafik fungsi trigonometri serta untuk menentukan nilai maksimum dan nilai minimum suatu grafik fungsi trigonometeri. Grafik fungsi trigonometri yang akan kita bahas di sini adalah grafik fungsi sinus, grafik fungsi cosinus dan grafik fungsi tangen. Fungsi trigonometri adalah sebuah fungsi periodik. Periodik artinya berulang-ulang secara teratur. Karena periodik, berarti ada periode. Apa itu Periode? Periode bisa kita sebut sebagai siklus, yaitu pengulangan hal yang sama setelah suatu selang tertentu. Misalnya kurva $y = sin\ x$ akan membentuk siklus setiap selang $360^{\circ}$. Berarti $y = sin\ x$ memiliki periode sebesar $360^{\circ}$. Supaya lebih jelas, kita akan membahas satu per satu dengan metode praktis. Grafik Fungsi SinusSebelum kita lanjutkan membahas fungsi sinus, sebaiknya kita ketahui terlebih dahulu dasar fungsi sinus, yaitu $1.\ y = sin\ x$ lihat gambar !. $2.\ y = sin^2\ x$ lihat gambar! Secara umum fungsi sinus dirumuskan sebagai Berikut $y = k\ sin\ ax Β± \theta + c$ $\bullet$ Nilai maksimum fungsi $= k + c$ $\bullet$ Nilai minimum fungsi $= -k + c$ $\bullet$ Amplitudo $= k$ $\bullet$ Periode $= \dfrac{360^{\circ}}{a}$ $\bullet$ $+ΞΈ$ β fungsi $y = k\ sin\ ax$ digeser kekiri sejauh $ΞΈ$. $\bullet$ $-\theta$ β fungsi $y = k\ sin\ ax$ digeser kekanan sejauh $\theta$. $\bullet$ $+C$ β fungsi $y = k\ sin\ ax Β± \theta$ digeser keatas sejauh $C$. $\bullet$ $-C$ β fungsi $y = k\ sin\ ax Β± \theta$ digeser kebawah sejauh $C$. $\bullet$ $y = -k\ sin\ ax Β± \theta$ adalah cermin dari $y = k\ sin\ ax Β± \theta$ terhadap sumbu $x$.Grafik Fungsi CosinusDasar dari fungsi kosinus yaitu, $1.\ y = cos\ x$ lihat gambar! $2.\ y = cos^2\ x$ lihat gambar! Secara umum fungsi kosinus dirumuskan sebagai berikut $y = k\ cos\ ax Β± \theta + c$ $\bullet$ Nilai maksimum fungsi $= k + c$ $\bullet$ Nilai minimum fungsi $= -k + c$ $\bullet$ Amplitudo $= k$ $\bullet$ Periode $= \dfrac{360^{\circ}}{a}$ $\bullet$ $+ΞΈ$ β fungsi $y = k\ cos ax$ digeser kekiri sejauh $ΞΈ$. $\bullet$ $-\theta$ β fungsi $y = k\ cos\ ax$ digeser kekanan sejauh $\theta$. $\bullet$ $+C$ β fungsi $y = k\ cos\ ax Β± \theta$ digeser keatas sejauh $C$. $\bullet$ $-C$ β fungsi $y = k\ cos\ ax Β± \theta$ digeser kebawah sejauh $C$. $\bullet$ $y = -k\ cos\ ax Β± \theta$ adalah cermin dari $y = k\ cos\ ax Β± \theta$ terhadap sumbu $x$.Grafik Fungsi TangenDasar dari fungsi tangen adalah $y = tan\ x.$ Perhatikan gambar! Secara umum fungsi tangen dirumuskan sebagai berikut $y = k\ tan\ ax Β± ΞΈ + c$ $\bullet$ Nilai maksimum fungsi $= \infty$ $\bullet$ Nilai minimum fungsi $= -\infty$ $\bullet$ Periode $= \dfrac{180^{\circ}}{a}$ $\bullet$ $+ΞΈ$ β fungsi $y = k\ tan\ ax$ digeser kekiri sejauh $ΞΈ$. $\bullet$ $-\theta$ β fungsi $y = k\ tan\ ax$ digeser kekanan sejauh $\theta$. $\bullet$ $+C$ β fungsi $y = k\ tan\ ax Β± ΞΈ$ digeser keatas sejauh $C$. $\bullet$ $-C$ β fungsi $y = k\ tan\ ax Β± ΞΈ$ digeser kebawah sejauh $C$. $\bullet$ $y = -k\ tan\ ax Β± ΞΈ$ adalah cermin dari $y = k\ tan\ ax Β± ΞΈ$ terhadap sumbu $x$.Contoh soal 1. Gambarlah grafik dari $y = 2\ sin\ 2x$.$y = 2\ sin\ 2x$ $\bullet$ Dasarnya adalah grafik $y = sin\ x$. $\bullet$ Nilai maksimum $= 2$ dan nilai minimum $= -2$. $\bullet$ Periode = $\dfrac{360^{\circ}}{2} = 180^{\circ}$ $\bullet$ Perhatikan grafik $y = sin\ x$, periode $= 360^{\circ}$, memotong sumbu $x$ ditik $x = 0^{\circ},\ x = 180^{\circ}$, dan $x = 360^{\circ}$. Grafik $y = sin\ 2x$ periode $= 180^{\circ}$, akan memotong sumbu $x$ dititik $x = 0^{\circ},\ x = 90^{\circ}$, dan $x = 180^{\circ}$. titik potong $y = sin\ x$ dibagi dua $\bullet$ Grafik $y = sin\ x$ maksimum di $x = 90^{\circ}$ dan minimum di $x = 270^{\circ}$. Grafik $y = sin\ 2x$ maksimum di $x = 45^{\circ}$ dan minimum di $x = 135^{\circ}$. Grafiknya adalah seperti diatas. Contoh soal 2. Gambarlah grafik dari $y = 2\ sin\ 3x - 30^{\circ}$$\bullet$ Dasarnya adalah grafik $y = sin\ x$ dan grafik $y = 2\ sin\ 3x.$ $\bullet$ Nilai maksimum $= 2$ dan nilai minimum $= -2$. $\bullet$ Periode $= \dfrac{360^{\circ}}{3} = 120^{\circ}$ $\bullet$ Grafik $y = 2\ sin\ 3x - 30^{\circ}$ adalah grafik $y = 2\ sin\ 3x$ digeser $30^{\circ}$ ke kanan. $\bullet$ Grafik $y = 2\ sin\ 3x$ akan memotong sumbu $x$ di titik $x = 0^{\circ},\ x = 60^{\circ},\ dan\ x = 120^{\circ}$. titik potong $y = sin\ x$ dibagi tiga. Setelah digeser $30^{\circ}$, akan memotong sumbu $x$ di titik $x = 30^{\circ},\ x = 90^{\circ},\ dan\ x = 150^{\circ}$ $\bullet$ Grafik $y = 2\ sin\ 3x$ maksimum di titik $x = 30^{\circ}$ dan minimum di titik $x = 90^{\circ}$. Grafik $y = 2\ sin\ 3x - 30^{\circ}$ maksimum dititik $x = 60^{\circ}$ dan minimum dititik $x = 120^{\circ}$. Grafiknya adalah seperti diatas. Contoh soal 3. Gambarlah grafik dari $y = -2\ cos\ 3x$.$\bullet$ Dasarnya adalah grafik $y = cos\ x$ dan $y = 2\ cos\ 3x$. $\bullet$ Nilai maksimum $= -2 = 2$ dan nilai minimum $= -2 = -2$. $\bullet$ Periode $= \dfrac{360^{\circ}}{3} = 120^{\circ}$ $\bullet$ Perhatikan grafik $y = cos\ x$, periode $= 360^{\circ}$ memotong sumbu $x$ di titik $x = 90^{\circ}\ dan\ x = 270^{\circ}$. $\bullet$ grafik $y = 2\ cos\ 3x$ periode $120^{\circ}$ akan memotong sumbu $x$ di titik $30^{\circ}\ dan\ 90^{\circ}$ titik potong $y = cos\ x$ dibagi tiga $\bullet$ $y = -2\ cos\ 3x$ adalah cermin dari $y = 2\ cos\ 3x$ terhadap sumbu $x$. $\bullet$ Grafik $y = 2\ cos\ 3x$ maksimum di titik $x = 0^{\circ}\ dan\ x = 120^{\circ}$ dan minimum di titik $x = 60^{\circ}$ $\bullet$ Grafik $y = -2\ cos\ 3x$ minimum di titik $x = 0^{\circ}\ dan\ x = 120^{\circ}$ dan maksimum di titik $x = 60^{\circ}$. Grafiknya adalah seperti di atas. Contoh soal 4. Gambarlah grafik dari $y = 2\ cos\ 2x + 90^{\circ}$.$y = 2\ cos\ 2x + 90^{\circ}$ $y = 2\ cos\ 2x + 45^{\circ}$ $\bullet$ Dasarnya adalah grafik $y = cos\ x$ dan $y = 2\ cos\ 2x$. $\bullet$ Nilai maksimum $= 2$ dan nilai minimum $= -2$. $\bullet$ Periode $= \dfrac{360^{\circ}}{2} = 180^{\circ}$ $\bullet$ grafik $y = 2\ cos\ 2x + 45$ adalah grafik $y = 2\ cos\ 2x$ digeser $45^{\circ}$ ke kiri. $\bullet$ grafik $y = 2\ cos\ 2x$ periode $180^{\circ}$ akan memotong sumbu $x$ di titik $x = 45^{\circ}\ dan\ x = 135^{\circ}$. $\bullet$ Setelah digeser sejauh $45^{\circ}$ ke kiri, grafik akan memotong sumbu $x$ di titik $0^{\circ}$, $90^{\circ}$, dan $180^{\circ}$. $\bullet$ Grafik $y = 2\ cos\ 2x$ maksimum di titik $x = 0^{\circ}\ dan\ x = 180^{\circ}$ dan minimum di titik $x = 90^{\circ}$ $\bullet$ Grafik $y = 2\ cos\ 2x + 45$ maksimum di titik $x = 135^{\circ}$ dan minimum di titik $x = 45^{\circ}$. Grafiknya adalah seperti di atas. Untuk lebih memahami fungsi trigonometri, silahkan pelajari soal-soal dan pembahasan yang berikut ! Soal dan Pembahasan menggunakan metode praktis. Contoh Soal Grafik Fungsi Trigonometri dan PembahasanDengan Metode Praktis$1$. Nilai maksimum dan nilai minimum dari fungsi $y = 3\ sin\ 2x$ adalah . . . . $A.\ -2\ dan\ -5$ $B.\ 2\ dan\ -3$ $C.\ -3\ dan\ -5$ $D.\ 3\ dan\ -3$ $E.\ 5\ dan\ -3$ [Grafik Fungsi Trigonometri]$y = 3\ sin\ 2x$ $Nilai\ maksimum = 3 = 3$ $Nilai\ minimum = -3 = -3$ β D. $2$. Nilai maksimum dan nilai minimum dari fungsi $y = -4\ sin\ 3x - 60^o$ adalah . . . . $A.\ -3\ dan\ -4$ $B.\ 3\ dan\ -3$ $C.\ -4\ dan\ -5$ $D.\ 4\ dan\ -4$ $E.\ 7\ dan\ -4$ [Grafik Fungsi Trigonometri]$y = -4\ sin\ 3x - 60^o$ $Nilai\ maksimum = -4 = 4$ $Nilai\ minimum = -4 = -4$ β D. $3.$ Nilai maksimum dan nilai minimum dari fungsi $y = 5\ cos\ 3x$ adalah . . . . $A.\ 3\ dan\ -3$ $B.\ 4\ dan\ -5$ $C.\ 5\ dan\ -5$ $D.\ 6\ dan\ -3$ $E.\ 7\ dan\ 5$ [Grafik Fungsi Trigonometri]$y = 5\ cos\ 3x$ $Nilai\ maksimum = 5$ $Nilai\ minimum = -5$ β C. $4.$ Nilai maksimum dan nilai minimum dari fungsi $y = -3\ cos\ 2x + 30^o$ adalah . . . . $A.\ -2\ dan\ -3$ $B.\ 2\ dan\ -2$ $C.\ -3\ dan\ -5$ $D.\ 3\ dan\ -3$ $E.\ 5\ dan\ -5$ [Grafik Fungsi Trigonometri]$y = -3\ cos\ 2x + 30^o$ $Nilai\ maksimum = -3 = 3$ $Nilai\ minimum = -3 = -3$ β D. $5$. Nilai maksimum dan nilai minimum dari fungsi $y = 3\ sin^2\ 3x$ adalah . . . . $A.\ 1\ dan\ -1$ $B.\ 2\ dan\ -2$ $C.\ 3\ dan\ 0$ $D.\ 4\ dan\ -2$ $E.\ 5\ dan\ -1$ [Grafik Fungsi Trigonometri]$y = 3\ sin^2\ 3x$ $Nilai\ maksimum = 3$ $Nilai\ minimum = 0$ β C. Ingat ! jika $y = k\ sin^2\ ax$ $Nilai\ maksimum = k$ $Nilai\ minimum = 0$ $6$. Nilai maksimum dan nilai minimum dari fungsi $y = -5\ sin^2\ 2x$ adalah . . . . $A.\ -5\ dan\ -7$ $B.\ 0\ dan\ -5$ $C.\ -3\ dan\ -5$ $D.\ 3\ dan\ -3$ $E.\ 5\ dan\ -5$ [Grafik Fungsi Trigonometri]$y = -5\ sin^2\ 2x$ $Nilai\ maksimum = 0$ $Nilai\ minimum = -5$ β B. Ingat ! jika $y = -k\ sin^2\ ax$ $Nilai\ maksimum = 0$ $Nilai\ minimum = -k$ $7$. Nilai maksimum dan nilai minimum dari fungsi $y = 2\ sin\ 3x + 3$ adalah . . . . $A.\ -2\ dan\ 0$ $B.\ 0\ dan\ -2$ $C.\ 2\ dan\ 0$ $D.\ 3\ dan\ -1$ $E.\ 5\ dan\ 1$ [Grafik Fungsi Trigonometri]$y = 2\ sin\ 3x + 3$ $Nilai\ maksimum = 2 + 3 = 5$ $Nilai\ minimum = -2 + 3 = 1$ β E. $8$. Nilai maksimum dan nilai minimum dari fungsi $y = -3\ sin\ 2x - 60^o - 5$ adalah . . . . $A.\ -3\ dan\ -5$ $B.\ -2\ dan\ -8$ $C.\ 0\ dan\ -5$ $D.\ 2\ dan\ -3$ $E.\ 3\ dan\ -7$ [Grafik Fungsi Trigonometri]$y = -3\ sin\ 2x - 60^o - 5$ $Nilai\ maksimum = -3 - 5$ $ = 3 - 5 = -2$ $Nilai\ minimum = -3 - 5$ $ = -3 - 5 = -8$ β B. $9$. Nilai maksimum dan nilai minimum dari fungsi $y = -4\ cos\ 3x + 30^o + 2$ adalah . . . . $A.\ -4\ dan\ -2$ $B.\ -2\ dan\ 0$ $C.\ 2\ dan\ -2$ $D.\ 4\ dan\ 1$ $E.\ 6\ dan\ -2$ [Grafik Fungsi Trigonometri]$y = -4\ cos\ 3x + 30^o + 2$ $Nilai\ maksimum = -4 + 2$ $ = 4 + 2 = 6$ $Nilai\ minimum = -4 + 2$ $ = -4 + 2 = -2$ β E. $10$. Nilai maksimum dan nilai minimum dari fungsi $y = 3 - 2cos^2\ 2x$ adalah . . . . $A.\ -2\ dan\ -3$ $B.\ 0\ dan\ -2$ $C.\ 2\ dan\ 0$ $D.\ 3\ dan\ 1$ $E.\ 5\ dan\ 3$ [Grafik Fungsi Trigonometri]$y = 3 - 2\ cos^2\ 2x$ β $y = -2\ cos^2\ 2x + 3$ $Nilai\ maksimum = 0 + 3 = 3$ $Nilai\ minimum = -2 + 3 = 1$ β D. Ingat ! jika $y = -k\ cos^2\ ax$ $Nilai\ maksimum = 0$ $Nilai\ minimum = -k$ $y = k\ cos^2\ 2x$ $Nilai\ maksimum = k$ $Nilai\ minimum = 0$ $11$. Jika $0^{\circ} β€ x β€ 360^{\circ}$, maka fungsi $y = sin\ x - 30^{\circ}$ akan maksimum pada $x =$ . . . . $A.\ 60^{\circ}$ $B.\ 90^{\circ}$ $C.\ 120^{\circ}$ $D.\ 150^{\circ}$ $E.\ 180^{\circ}$ [Grafik Fungsi Trigonometri]$y = sin\ x - 30^{\circ}$ Perhatikan grafik $y = sin\ x$, maksimum di titik $x = 90^{\circ}$. Grafik $y = sin\ x - 30^{\circ}$ adalah hasil dari pergeseran $y = sin\ x$ sejauh $30^{\circ}$ kekanan. Akibatnya grafik $y = sin\ x - 30^{\circ}$ akan maksimum di titik $x = 90^{\circ} + 30^{\circ} = 120^{\circ}$ β C. $12$. Jika $0^{\circ} β€ x β€ 120^{\circ}$, maka fungsi $y = 2\ sin\ 3x$ akan maksimum pada $x =$ . . . . $A.\ 0^{\circ}$ $B.\ 15^{\circ}$ $C.\ 30^{\circ}$ $D.\ 45^{\circ}$ $E.\ 90^{\circ}$ [Grafik Fungsi Trigonometri]$y = 2\ sin\ 3x$ Perhatikan grafik $y = sin\ x$, maksimim di titik $x = 90^{\circ}$. Grafik $y = 2\ sin\ 3x$ akan maksimum di $x = 30^{\circ}$ β C. $13$. Jika $0^{\circ} β€ x β€ 180^{\circ}$, maka fungsi $y = -3\ cos\ 2x$ akan minimum pada $x =$ . . . . $A.\ 0^{\circ}\ dan\ 180^{\circ}$ $B.\ 30^{\circ}\ dan\ 120^{\circ}$ $C.\ 45^{\circ}\ dan\ 135^{\circ}$ $D.\ 60^{\circ}\ dan\ 150^{\circ}$ $E.\ 90^{\circ}\ dan\ 180^{\circ}$ [Grafik Fungsi Trigonometri]$y = -3\ cos\ 2x$ Perhatikan grafik $y = cos\ x$, minimum di titik $x = 180^{\circ}$ dan maksimum di titik $x = 0^{\circ}\ dan\ x = 360^{\circ}$. Grafik $y = -cos\ x$ adalah cermin dari grafik $y = cos\ x$ terhadap sumbu $x$. Akibatnya $y = -cos\ x$ maksimum di titik $x = 180^{\circ}$ dan minimum di titik $x = 0^{\circ}\ dan\ x = 360^{\circ}$. Grafik $y = -3\ cos\ 2x$ akan maksimum di titik $x = 90^{\circ}$ dan minimum di titik $x = 0^{\circ}$ dan $x = 180^{\circ}$ β A. $14$. Jika $0^{\circ} β€ x β€ 180^{\circ}$, maka fungsi $y = 3\ sin\ 2x - 30^{\circ}$ mempunyai titik maksimum di titik . . . . $A.\ 30^{\circ}, 3$ $B.\ 45^{\circ}, 3$ $C.\ 60^{\circ}, 3$ $D.\ 75^{\circ}, 3$ $E.\ 90^{\circ}, 3$ [Grafik Fungsi Trigonometri]$y = 3\ sin\ 2x - 30^{\circ}$ β $y = 3\ sin\ 2x - 15^{\circ}$ Perhatikan grafik $y = sin\ x$, maksimum di titik $x = 90^{\circ}$. Grafik $y = sin\ 2x$ akan maksimum di titik $x = 45^{\circ}$. Grafik $y = 3\ sin\ 2x - 15^{\circ}$ adalah hasil pergeseran dari grafik $y = sin\ 2x$ sejauh $15^{\circ}$ ke kanan. Akibatnya $y = 3\ sin\ 2x - 15^{\circ}$ akan maksimum di titik $x = 45^{\circ} + 15^{\circ} = 60^{\circ}$ β C. $15$. Jika $0^{\circ} β€ x β€ 180^{\circ}$, maka fungsi $y = 2\ cos\ 2x + 60^{\circ} - 1$ mempunyai titik minimum di titik . . . . $A.\ 30^{\circ}, -3$ $B.\ 45^{\circ}, -3$ $C.\ 60^{\circ}, -3$ $D.\ 75^{\circ}, -3$ $E.\ 90^{\circ}, -3$ [Grafik Fungsi Trigonometri]$y = 2\ cos\ 2x + 60^{\circ} - 1$ β $y = 2\ cos\ 2x + 30^{\circ} - 1$ Nilai minimum $= -2 - 1 = -3$ β $y = -3$. Grafik $y = 2\ cos\ 2x$ akan minimum di titik $x = 90^{\circ}$. Grafik $y = 2\ cos\ 2x + 30^{\circ} - 1$ adalah pergeseran grafik $y = 2\ cos \ 2x$ sejauh $30^{\circ}$ ke kiri. Akibatnya Grafik $y = 2\ cos\ 2x + 30^{\circ} - 1$ akan minimum di titik $x = 90^{\circ} - 30^{\circ} = 60^{\circ}$ β C. $16$. Jika $0^{\circ} β€ x β€ 120^{\circ}$, maka fungsi $y = -2\ cos\ 3x - 60^{\circ} + 2$ mempunyai titik minimum di titik . . . . $A.\ 40^{\circ}, -2$ $B.\ 20^{\circ}, 0$ $C.\ 40^{\circ}, 0$ $D.\ 90^{\circ}, -2$ $E.\ 120^{\circ}, 0$ [Grafik Fungsi Trigonometri]$y = -2\ cos\ 3x - 60^{\circ} + 2$ β $y = -2\ cos\ 3x - 20^{\circ} + 2$ Nilai minimum $= -2 + 2 = -2 + 2 = 0$. Grafik $y = -2\ cos\ 3x$ akan minimum di titik $x = 0^{\circ}\ dan\ x = 120^{\circ}$. Grafik $y = -2\ cos\ 3x - 20^{\circ} + 2$ adalah hasil pergeseran dari grafik $y = -2\ cos\ 3x$ sejauh $20^{\circ}$ ke kanan. Akibatnya $y = -2\ cos\ 3x - 20^{\circ} + 2$ akan minimum di titik $x = 20^{\circ}\ dan\ x = 140^{\circ}$. Jadi titik minimumnya adalah $20^{\circ}, 0\ dan\ 140^{\circ}, 0$ β B. $17$. Nilai minimum dari fungsi $y = 2 + cos^{2}3x$ dicapai pada $x =$ . . . . $A.\ 30^{\circ}$ $B.\ 45^{\circ}$ $C.\ 60^{\circ}$ $D.\ 75^{\circ}$ $E.\ 90^{\circ}$ [Grafik Fungsi Trigonometri]$y = 2 + cos^{2}\ 3x$ $y = cos^{2}\ x$ minimum di titik $x = 90^{\circ}\ dan\ x = 270^{\circ}$ β lihat gambar ! Berati $y = cos^{2}3x$ akan minimum di titik $x = 30^{\circ}\ dan\ x = 90^{\circ}$ β A. $18$. Periode dari fungsi $y = 2\ sin\ 3x - 30^{\circ}$ adalah . . . . $A.\ 90^{\circ}$ $B.\ 120^{\circ}$ $C.\ 150^{\circ}$ $D.\ 180^{\circ}$ $E.\ 360^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = \dfrac{360^{\circ}}{3} = 120^{\circ}$ β B. $19$. Periode dari fungsi $y = -2\ cos\ 2x$ adalah . . . . $A.\ 90^{\circ}$ $B.\ 120^{\circ}$ $C.\ 150^{\circ}$ $D.\ 180^{\circ}$ $E.\ 360^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = \dfrac{360^{\circ}}{2} = 180^{\circ}$ β D. $20$. Periode dari fungsi $y = -3\ sin\ 4x + 20^{\circ}$ adalah . . . . $A.\ 90^{\circ}$ $B.\ 120^{\circ}$ $C.\ 150^{\circ}$ $D.\ 180^{\circ}$ $E.\ 360^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = \dfrac{360^{\circ}}{4} = 90^{\circ}$ β A. $21$. Periode dari fungsi $y = 5\ cos\ 6x - 30^{\circ}$ adalah . . . . $A.\ 30^{\circ}$ $B.\ 60^{\circ}$ $C.\ 90^{\circ}$ $D.\ 120^{\circ}$ $E.\ 180^{\circ}$ [Grafik Fungsi Trigonometri]$y = 5\ cos\ 6x - 30^{\circ}$ $y = 5\ cos\ 6x - 5^{\circ}$ $Periode = \dfrac{360^{\circ}}{6} = 60^{\circ}$ β B. $22$. Fungsi $y = 2\ sin\ 3x$ akan bernilai nol jika $x =$ . . . . $A.\ 30^{\circ}$ $B.\ 45^{\circ}$ $C.\ 60^{\circ}$ $D.\ 90^{\circ}$ $E.\ 105^{\circ}$ [Grafik Fungsi Trigonometri]$y = sin\ x$ akan bernilai nol jika $x = 0^{\circ}$, $x = 180^{\circ}$, dan $x = 360^{\circ}$. Berarti $y = 2\ sin\ 3x$ akan bernilai nol jika $x = 0^{\circ}$, $x = 60^{\circ}$, dan $x = 120^{\circ}$ β C. $23$. Persamaan dari grafik fungsi di bawah adalah . . . . $A.\ y = -2\ sin\ 2x$ $B.\ y = 2\ cos\ x$ $C.\ y = 2\ sin\ 2x - 30^{\circ}$ $D.\ y = -2\ cos\ 2x$ $E.\ y = 2\ sin\ 2x$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 2$ Jika diperhatikan, grafiknya adalah cermin dari grafik $y = sin\ 2x$ terhadap sumbu $x$. Berarti persamaan grafiknya adalah $y = -2\ sin\ 2x$. β A. $24$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = sin\ x$ $B.\ y = cos\ x - 30^{\circ}$ $C.\ y = sin\ x - 30^{\circ}$ $D.\ y = cos\ x + 30^{\circ}$ $E.\ y = sin\ x + 30^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = 360^{\circ}$ $Amplitudo = 1$ Grafiknya adalah grafik dari $y = sin\ x$ digeser sejauh $30^{\circ}$ ke kanan. Berarti persamaannya adalah $y = sin\ x - 30^{\circ}$ β C. $25$. Persamaan dari grafik dibawah adalah . . . . $A.\ y = 2\ sin\ 2x - 30^{\circ}$ $B.\ y = 2\ cos\ 2x - 30^{\circ}$ $C.\ y = -2\ cos\ 2x - 30^{\circ}$ $D.\ y = -2\ sin\ 2x - 30^{\circ}$ $E.\ y = -2\ cos\ 2x - 30^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 2$ Grafiknya adalah grafik dari $y = -2\ cos\ 2x$ digeser $30^{\circ}$ ke kanan. Berarti persamaannya adalah $y = -2\ cos\ 2x - 30^{\circ}$ β C. $26$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = 2\ cos\ \left\dfrac{\pi}{2} + x\right$ $B.\ y = 2\ cos\ \left\dfrac{\pi}{2} - x\right$ $C.\ y = 2\ sin\ \left\dfrac{\pi}{2} + x\right$ $D.\ y = 2\ sin\ \left\dfrac{\pi}{2} - 2x\right$ $E.\ y = 2\ sin\ \left\dfrac{\pi}{2} + 2x\right$ [Grafik Fungsi Trigonometri]$Periode = 360^{\circ}$ $Amplitudo = 2$ Grafiknya adalah grafik dari $y = cos\ x$, tetapi tidak ada pada opsi. Ingat ! grafik dari $y = k\ cos\ x$ adalah grafik dari $y = k\ sin\ x$ digeser sejauh $90^{\circ}$ ke kiri. Dengan kata lain $y = 2\ cos\ x β y = 2\ sin\ \leftx + \dfrac{Ο}{2}\right$ β C. $27$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = 2\ sin\ x$ $B.\ y = -2\ sin\ 2x$ $C.\ y = 2\ sin\ \left\dfrac{Ο}{2} + 2x\right$ $D.\ y = -2\ cos\ \left\dfrac{Ο}{2} + 2x\right$ $E.\ y = 2\ cos\ \left\dfrac{Ο}{2} + 2x\right$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 2$ Sangat jelas bahwa grafiknya adalah grafik dari $y = 2\ sin\ 2x$, tetapi tidak ada pada opsi. Ingat ! A. Grafik dari $y = 2\ sin\ 2x$ adalah grafik dari $y = 2\ cos\ 2x$ di geser sejauh $\dfrac{\pi}{4}$ ke kanan. Berarti $y = 2\ sin\ 2x β y = 2\ cos\ 2\leftx - \dfrac{\pi}{4}\right$ tetapi tidak ada juga pada opsi. B. Grafik dari $y = 2\ sin\ 2x$ adalah grafik dari $y = -2\ cos\ 2x$ di geser sejauh $\dfrac{\pi}{4}$ ke kiri. Berarti $y = 2\ sin\ 2x β y = - 2\ cos\ 2\leftx + \dfrac{\pi}{4}\right$ $β y = - 2\ cos\ \left2x + \dfrac{\pi}{2}\right$ β D. 28. Persamaan dari grafik di bawah adalah . . . . $A.\ y = tan\ 2x$ $B.\ y = 2\ tan\ 2x$ $C.\ y = tan\ \dfrac12x$ $D.\ y = -2\ tan\ x$ $E.\ y = 2\ tan\ x$ [Grafik Fungsi Trigonometri]$Periode = 90^{\circ}$ β $y = k\ tan\ 2x$. Masukkan $x = 22,5^{\circ}$ dan $y = 2$ kedalam persamaan $y = k\ tan\ 2x$, didapat $k = 2$. Maka persamaannya adalah $y = 2\ tan\ 2x$ β B. $29$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = sin\ 2x - 30^{\circ} + 1$ $B.\ y = sin\ 2x - 30^{\circ} + 1$ $C.\ y = cos\ 2x - 30^{\circ} + 1$ $D.\ y = cos\ 2x - 30^{\circ} + 1$ $E.\ y = 2\ sin\ 2x + 30^{\circ} + 1$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 1$ Sangat jelas terlihat bahwa grafiknya adalah grafik dari $y = sin\ 2x$ digeser sejauh $30^{\circ}$ ke kanan, kemudian digeser $1$ satuan ke atas. Berarti persamaannya adalah $y = sin 2x - 30^{\circ} + 1$ β A. $30$. Persamaan dari grafik di bawah adalah . . . . $A.\ y = cos\ 2x - 60^{\circ}$ $B.\ y = sin\ 2x - 60^{\circ}$ $C.\ y = cos\ 2x - 60^{\circ}$ $D.\ y = sin\ 2x - 60^{\circ}$ $E.\ y = cos\ 2x - 60^{\circ}$ [Grafik Fungsi Trigonometri]$Periode = 180^{\circ}$ $Amplitudo = 1$ Grafiknya adalah grafik dari $y = cos\ 2x$ digeser $30^{\circ}$ ke kanan. Berarti persamaannya adalah $y = cos\ 2x - 30^{\circ}$ $y = cos\ 2x - 60^{\circ}$ β A. Demikianlah Soal dan Pembahasan Grafik Fungsi Trigonometri, semoga bermanfaat. Selamat belajar ! Disusun oleh Joslin Sibarani Alumni Teknik Sipil ITBSHARE THIS POST
Turunan fungsi aljabar telah kalian kuasai, bagaimana dengan turunan fungsi trigonometri? mari kita pahami rumusnya serta berlatih di soal dan pembahasan turunan fungsi trigonometri bersama-sama, dijamin sukses dalam ujian kalianβ¦. Untuk menentukan turunan trigonometri sama dengan konsep awal mencari turunan, namun disini langsung kita ambil hasilnyaβ¦. dimana $fβ x = \underset{h\rightarrow 0}{lim}\\frac{fx + h - fx}{h}$ maka Turunan pada fungsi trigonometri akan mempunyai rumus $fx = sin\x $ maka $fβx= cos\x$ $fx = cos\x $ maka $ fβx= - sin\x$ $fx = maka $fβx= $fx = maka $fβx= contoh $\fx= 3cos\x$ maka $fβx=-3sin\x$ $\fx=2sin\5x$ maka $fβx=10cos\5x$ $\fx= \begin{array}{rcl}fβx & = & {-4}. & = & {-12}.sin3x+\pi\end{array} Rumus rumus yang dipakai di turunan fungsi aljabar, berlaku pula untuk mengerjakan turunan fungsi trigonometri maupun gabungan keduanya lets try thisβ¦. $\fx=sec\x$ tentukan $f x$ ! Jawab \begin{array}{rcl}fx & = & sec\x\\ & = & \frac{1}{cos\x}\end{array} \begin{array}{lcl}u=1 & maka & uβ=0\\ v=cos\x & maka & vβ=-sin\x\end{array} \begin{align*}fβx & = & \frac{uβ.v-vβ.u}{v^2}\\ & = & \frac{ & = & \frac{sin\x}{cos^2\x}\\ & = & \frac{sin\x}{cos\x}.\frac{1}{cos\x}\\ & = & tan\ $\fx=x^2+2.sin\x$ tentukan $f x$ ! Jawab \begin{array}{lcl}u=x^2+2& maka & uβ=2x\\v=sin\x & maka & vβ=cos\x\end{array} \begin{array}{rcl}fβx & = & uβ.v+vβ.u\\ & = & & = & 2x\sin\x+x^ Turunan ke-n Diberikan fungsi $fx$, maka turunan pertama dari $fx$ adalah $fβ x$ ; turunan kedua dari $fx$ adalah $fββ x$ ; turunan ketiga dari $fx$ adalah $fβββ x$ dst. $\fx=4x^ tentukan turunan kedua dari $fx$! Jawab kita cari turunan pertama dulu ya.. \begin{array}{lcl}u=4x^2 & maka & uβ=8x\\ v=cos\x & maka & vβ=-sin\x\end{array} \begin{array}{rcl}fβx & = & uβ.v+vβ.u\\ & = & & = & perhatikan untuk $fβx= mempunyai dua suku kita misalkan bahwa suku-suku $f x$ adalah a dan b dimana $f x = a β b$ untuk mencari turunan kedua akan berlaku $f βx = aβ β bβ$ mari kita cari turunan masing-masing sukuβ¦ ambil suku pertama dari $f x$ kita misalkan $a= \begin{array}{lcl}u=8x & maka & uβ=8\\ v=cos\x & maka & vβ=-sin\x\end{array} \begin{array}{rcl}aβ & = & uβ.v+vβ.u\\ & = & & = & ambil suku kedua dari $f x$ kita misalkan $b=4x^ \begin{array}{lcl}u=4x^2 & maka & uβ=8x\\ v=sin\x & maka & vβ=cos\x\end{array} \begin{array}{rcl}bβ & = & uβ.v+vβ.u\\ & = & & = & nah, kembali ke $fβx=aβ-bβ$ \begin{array}{rcl}f x & = & aβ-bβ\\ & = & & = & & = & selesai,dehβ¦..coba yang lain yuk! $\fx= tentukan turunan ke-empat dari $fx$ ! Jawab $fx= mempunyai dua suku kita misalkan a dan b sehingga $f x = a + b $ cari turunan masing-masing suku dulu yaβ¦ $a= \begin{array}{lcl}u=x & maka & uβ=1\\ v=cos\x & maka & vβ=-sin\x\end{array} \begin{array}{rcl}aβ & = & uβ.v+vβ.u\\ & = & & = & cos\ $b=sin\x$ maka $bβ=cos\x$ \begin{array}{rcl}fβx & = & aβ+bβ\\ & = & cos\ & = & $fβx= mempunyai dua suku kita misalkan lagi c dan d sehingga $f βx = c β d $ $c= maka $cβ= $d= \begin{array}{lcl}u=x & maka & uβ=1\\ v=sin\x & maka & vβ=cos\x\end{array} \begin{array}{rcl}dβ & = & uβ.v+vβ.u\\ & = & & = & sin\x+ \begin{array}{rcl}fβx& = & cβ-dβ\\ & = & & = & {-2}.sin\x-sin\ & = & {-3}.sin\ $fβx= mempunyai dua suku, suku pertama langsung dapat kita turunkan dan turunan suku kedua dapat dilihat telah kita cari di atas $a= maka $aβ=cos\ sehingga \begin{array}{rcl}fββx & = & {-3}.cos\x-cos\ & = & {-3}.cos\x-cos\x+ & = & {-4}.cos\x+ $fββx={-4}.cos\x+ mempunyai dua suku, suku pertama langsung dapat kita turunkan dan turunan suku kedua dapat dilihat telah kita cari di atas $d= maka $dβ=sin\x+ sehingga \begin{array}{rcl}fβββx & = & {-4}.-sin\x+sin\x+ & = & {4}.sin\x+sin\x+ & = & {5}.sin\x+ waaaaahβ¦..selesai !!!! begitu seterusnya hingga turunan ke-n β¦..coba sendiri dengan soal yang lain yahβ¦!! ada yang bertanya soal seperti ini Jika diketahui $y=sin\x$ buktikan bahwa turunan ke-n yaitu $y^n=sinx+\frac{\pi}{2}.n$ ! Jawab ingatlah kembali nilai sin x di tiap kuadran $y=sin\x$ $yβ=cos\x$ $=\sin\frac{\pi}{2}+x$ $=\sinx+\frac{\pi}{2}.1$ $yββ=-sin\x$ $=\sin{\pi}+x$ $=\sinx+\frac{\pi}{2}.2$ $yβββ=-cos\x$ $=\sin\frac{3.\pi}{2}+x$ $=\sinx+\frac{\pi}{2}.3$ $yβββ=sin\x $ $=\sin{2.\pi}+x$ $=\sinx+\frac{\pi}{2}.4$ β¦ β¦ β¦ β¦ β¦ β¦ dst dst dst sehingga $\large y^n=\sinx+\frac{\pi}{2}.n$ terbukti Untuk contoh latihan soal dan pembahasannya di Soal 3 Turunan Trigonometri yahβ¦.
soal dan pembahasan turunan fungsi trigonometri